
REINFORCEMENT
LEARNING
A playful machine learning

Avneet Kaur
PhD Applied Mathematics
Email: a93kaur@uwaterloo.ca

GUESS THE ANIMAL

QUOLL

WHAT IS MACHINE LEARNING?
• machines learn to do a given task without being explicitly programmed.

Supervised
learning

•Labelled
dataset

•Learn f to map
y=f(x)

•Classification,
Regression

Unsupervised
learning

•Unlabelled
dataset

•Learn
underlying
structure

•Clustering,
Dimensionality
reduction

Reinforcement
learning

•Generate
dataset

•Maximize utility
by learning to
interact

•Robot
navigation,
learning games

TRANSLATE THESE WORDS

• ਕੰਨ (Punjabi) • Nez (French)

KEY TAKEAWAYS

• You were rewarded for each type of answer.
• You as an agent interacted with the environment to translate better.
• Environment gave feedback in the form of rewards.

SUDOKU

Task: Fill the missing squares in as less time as
possible.

• Agent makes a sequence of moves(actions)
• Each move by the agent decides which subsequent squares

can be filled next

• Reaching the goal state will have a reward
• Intermediate squares may or may not have reward

Goal stateAn intermediate state

RL FRAMEWORK

INVENTORY CONTROL EXAMPLE

• Observation: Stock level
• Action: What to purchase
• Reward: Profit

• An external system that an agent can perceive and act on
• Receives action from agent and in response emits appropriate reward and

(next) observation

ENVIRONMENT

AGENT
• A system that takes actions to change the state of the environment

(Decision maker)
• Executes action upon receiving observation
• For taking an action the agent receives an appropriate reward

• State can be viewed as a summary or an abstraction of the history of the
system

• For example, in Sudoku, the state could be raw image or vector
representation of the board

STATE

REWARD
• Reward is a scalar feedback signal
• Indicates how well agent acted at a certain time
• The agent’s aim is to maximise cumulative reward

COMPONENTS OF AN RL AGENT

• Policy: agent’s behaviour function; π: S A
• Value function: evaluates how good is each state and/or

action. Therefore, it is used to choose appropriate action among the
available options.

• Model: agent’s representation of the environment; Mainly contains
state transition information and reward function.

TIC TAC TOE
• Observation: Board position
• Action: Moves
• Reward: Win or loss
• Policy: Agent has multiple empty squares to

choose
• Random policy is to place ’X’ in any one of

empty squares randomly
• Better policy is to place ’X’ in square 5

• Value Function: Agent may have
an estimate about the value of being in
a certain board configuration

• Model: Model of transition probabilities
between states

x1 O2 3

x4 5 6

O7 O8 X9

FRAMEWORK

MARKOV DECISION PROCESS

• Provides a mathematical framework for modelling decision making process
• Can formally describe the working of the environment and the agent
• Core problem in solving an MDP is to find an ’optimal’ policy (or behaviour)

for the decision maker (agent) to maximize the total future reward

• A random variable X denotes the outcome of a random phenomenon
• Examples include outcome of a coin toss and the roll of a dice.

RANDOM VARIABLE

STOCHASTIC PROCESS
• It is a collection of random variables indexed by some mathematical set T.
• T has the interpretation of time and is typically, ℕ or ℝ. Assume T=ℕ for our

sessions.
• Notation: {Xt}t∈T

MARKOV PROPERTY

• A stochastic process {St}t∈T is said to have Markov property if for any state st,
P(St+1|St)=P(St+1|S1,S2,…,St).

• Stcaptures all relevant information from history and is a sufficient statistic of
the future.

• Memoryless property

STATE TRANSITION PROBABILITY
• For a stochastic process {St}t∈T , the state transition probability for successive

states s and s′ is denoted by
PSS′= P(St+1= S′|St= S).

• State transition matrix P then denotes the transition probabilities from all states s to all
successor states s′ (with each row summing to 1.

P11 P12 ... P1n
.

P= .
.

Pn1 Pn2 ... Pnn

MARKOV CHAIN
• A stochastic process {st}t∈T is

a Markov Chain if it satisfies
Markov property.

• It is represented by the
tuple < S, P > where S denotes
the set of states.

• It is also called Markov process.

MARKOV REWARD PROCESS
A Markov reward process is a tuple <S,P,R, 𝛾> is a Markov
chain with values
• S: Finite set of states
• P: State transition probability
• R: Reward for being in state st is given by a deterministic

function R
rt+1=R(st)

• 𝛾: Discount factor such that 𝛾∈ [0,1]

WHY DISCOUNTING?

• Offers trade off between ‘myopic’ and ‘far sighted’ rewards
• Avoids infinite returns in cyclic and infinite horizon Markov processes
• Undiscounted Markov reward process are mostly used when sequences

terminate.

TOTAL DISCOUNTED REWARD
Total discounted reward from time step t is, ∑!"#$ (𝛾!𝑟%&!&')
• 𝛾→ 0 (myopic); 𝛾→ 1(far-sighted)
• Value of reward r after k+1 timesteps is 𝛾kr.

STATE-VALUEFUNCTION
Value function V(s) denotes the long-term value of state s,

𝑉 𝑠 = 𝔼 𝐺% 𝑠% = 𝑠 = 𝔼(+
!"#

$

𝛾!𝑟%&!&' 𝑠% = 𝑠

and is independent of time, t.

RECURSIVE FORMULATION
OF VALUE FUNCTION

𝑉 𝑠 = 𝔼 𝐺" 𝑠" = 𝑠 = 𝔼('
#$%

&

𝛾#𝑟"'#'(𝑠" = 𝑠

= 𝔼 𝑟"'(+ 𝛾𝑟"') + 𝛾)𝑟"'* +⋯ 𝑠" = 𝑠

= 𝔼 𝑟"'(𝑠" = 𝑠 + 𝛾𝔼 𝐺"'(𝑠" = 𝑠

= 𝔼 𝑟"'(𝑠" = 𝑠 + 𝛾𝔼 𝔼 𝐺"'(𝑠" = 𝑠 𝑠" = 𝑠

= 𝔼 𝑟"'(𝑠" = 𝑠 + 𝛾𝔼 𝑉 𝑠"'(𝑠" = 𝑠

= 𝔼(𝑟"'(+ 𝛾𝑉(𝑠"'()|𝑠" = 𝑠)

BELLMAN EQUATION FOR MRP

• For 𝑠! ∈ S, a successor state of 𝑠 with transition probability P""!, we can
rewrite 𝑉(𝑠) as

𝑉 𝑠 = 𝔼 𝑟#$% + 𝛾 -
""∈S

P""" V s! .

• This is the Bellman equation for value functions

MATRIX FORM

• Let S={1,2,…n} and P be known. Then,
𝑉 = R+ γPV

where	 𝑉 1
𝑉 2
.
.
.

𝑉(𝑛)

=

R 1
R 2
.
.
.

R(𝑛)

+ 𝛾

P%%
P'%

⋯
…

P%(

P'(
⋮ ⋱ ⋮

P(% ⋯ P((

×

𝑉 1
𝑉 2
.
.
.

𝑉(𝑛)

.

Solving for V, we get,
𝑉 = (𝐼 − 𝛾P))%R.

ABSORBING STATE

• A state 𝑖 ∈ S is said to be absorbing if it is impossible to leave that state,
Mathematically,

𝑃*+ = C1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

• In a game of snake and ladders, the state ‘100’ is an absorbing state.

MARKOV DECISION PROCESS

MDP is a tuple <S,A, P,R, 𝛾> where
• S: Finite set of states
• A: Finite set of actions
• P: State transition probability

P(()
* = ℙ 𝑠%&' = 𝑠) 𝑠% = 𝑠, 𝑎% = 𝑎 , 𝑎% ∈ 𝐴

• R: Reward for taking action 𝑎𝑡 at state 𝑠𝑡 and transitioning to state 𝑠%&' is
given by the deterministic function R

• 𝑟%&' = R 𝑠% , 𝑎% , 𝑠%&' .
• 𝛾: Discount factor such that 𝛾∈ [0,1]

SNAKE AND LADDERS

States: Each square from 1 to 100
Actions: Move right, climb ladders, or
come down snakes depending on
the number on the die throw
Rewards: -1 for every move made until
reaching ‘100’

ATARI-PONG GAME

States: Possible set of all images
Actions: Paddle up or down
Rewards:
+1 for making the opponent miss the ball,
-1 if the agent misses the ball,
0 otherwise.

POLICY

• Let π denote a policy that maps state space S to action space A .

There are 2 types of policies:
• Deterministic policy: a=π(s), s∈S , a∈A.

• Stochastic policy: π(a|s)=P[at=a|st=s]

TIC TAC TOE REVISITED

• Deterministic Policy: Place ’X’ in square 5
• Stochastic policy: Place ’X’ in square 5 with

probability 0.8 and place ‘X’ in square 6 with
probability 0.2

x1 O2 3

x4 5 6

O7 O8 X9

NAVIGATION GRID
• States: {1,2,…,14, T1, T2}
• Actions: {right, left, up, down}
• Deterministic Policy:

𝜋 𝑠 = C𝑑𝑜𝑤𝑛, 𝑠 = {3,7,11}
𝑟𝑖𝑔ℎ𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Example sequences: {{12,13,14,T2}, {4,5,6,7,11,T2}}
• Stochastic Policy: 𝜋(𝑎|𝑠) could be a uniform random

action between all possible actions at state s
• Example sequences: {{4,5,9,8,12,…},{1,2,6,5,1,2,3,…}}

T1

T2

GRAPHICAL NOTATION

S1

S2

S3

a=1

a=2

p=1

p=0.8

p=0.2

VALUE FUNCTION REVISITED

• The value function 𝑉(𝑠) under policy 𝜋 in state 𝑠 is the expected return
starting from state s and then following policy 𝜋

𝑉- 𝑠 = 𝔼- -
./0

1

𝛾.𝑟#$.$%|𝑠# = 𝑠 = 𝔼- 𝑟#$% + 𝛾𝑉- 𝑠#$% 𝑠# = 𝑠 .

• Goal: Find policy 𝜋 that maximizes 𝑉-(𝑠).

EXAMPLE
S1
(0)

S2
(0)

S3
(0)

S4
(100)

Compute 𝑉(𝑠)) and 𝑉 𝑠* with 𝛾 = 1
• Policy 1: Move left or right with equal probability

Solution: 𝑉 𝑠) = 0 ∗ 0.5 + 0 ∗ 0.5 = 0
𝑉 𝑠* = 0 ∗ 0.5 + 100 ∗ 0.5 = 50

• Policy 2: Move left or right with probability 0.6 and 0.4
respectively
Solution: 𝑉 𝑠) = 0 ∗ 0.6 + 0 ∗ 0.4 = 0

𝑉 𝑠* = 0 ∗ 0.6 + 100 ∗ 04 = 40
• Policy 3: Move right with probability 1

Solution: 𝑉 𝑠) = 0 ∗ 1 = 0
𝑉 𝑠* = 100 ∗ 1 = 100

ACTION-VALUE FUNCTION

• The action value function 𝑄(𝑠, 𝑎) under policy 𝜋 is the expected return
starting from state 𝑠 and taking action 𝑎 following policy 𝜋

𝑄+ 𝑠, 𝑎 = 𝔼+ ∑!"#$ 𝛾!𝑟%&!&' 𝑠% = 𝑠, 𝑎% = 𝑎 .
• It can be decomposed as

𝑄+ 𝑠, 𝑎 = 𝔼+ 𝑟%&' + 𝛾𝑄+ 𝑠%&',𝑎%&' 𝑠% = 𝑠, 𝑎% = 𝑎 .

RELATIONSHIP BETWEEN 𝑉# AND 𝑄#

𝑉! 𝑠 = $
"#A

𝜋(𝑎|𝑠)𝑄!(𝑠, 𝑎)

OPTIMAL VALUE FUNCTION

• The optimal value function 𝑉∗, for state 𝑠, is the maximum value function over
all policies.

• Mathematically,
𝑉∗ 𝑠 = max

-34#$%$
𝑉- 𝑠 .

• The optimal action-value function 𝑄∗ 𝑠, 𝑎 , for a state 𝑠 and action 𝑎, is the
maximum action-value function over all policies.

• Mathematically,
𝑄∗ 𝑠, 𝑎 = max

-34#$%$
𝑄- 𝑠, 𝑎 .

FOCUS EXAMPLE

FOCUS EXAMPLE CONTINUED

OPTIMAL POLICY

• Define a partial ordering of policies
𝜋 ≥ 𝜋!, 𝑖𝑓 𝑉- 𝑠 ≥ 𝑉-" 𝑠 , ∀𝑠 𝜖 S

• There exists an optimal policy 𝜋∗ that is better than or equal to all other
policies.

• All optimal policies achieve the optimal value function,
𝑉∗ 𝑠 = 𝑉-∗ 𝑠 .

• All optimal policies achieve the optimal action-value function,
𝑄∗ 𝑠, 𝑎 = 𝑄-∗ 𝑠, 𝑎

FOCUS EXAMPLE REVISITED

RELATIONSHIP BETWEEN 𝑉∗ # 𝑎𝑛𝑑 𝑄∗(#,#)

𝑉∗ 𝑠 = max
"∈A

𝑄∗(𝑠, 𝑎)

GREEDY POLICY
• For any given 𝑉 ^ , define 𝜋(𝑎|𝑠) as follows:

𝜋5 = 𝜋 𝑎 𝑠 = 𝑔𝑟𝑒𝑒𝑑𝑦(𝑉) =
1, 𝑖𝑓 𝑎 = argmax

63A
[-
""3S

P """
6 (R """

6 + 𝛾𝑉(𝑠!))]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
• For given 𝑄 ^,^ , define 𝜋(𝑎|𝑠) as follows:

𝜋5 = 𝜋 𝑎 𝑠 = 𝑔𝑟𝑒𝑒𝑑𝑦(𝑉) = c
1, 𝑖𝑓 𝑎 = argmax

63A
𝑄(𝑠, 𝑎)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Greedy policy w.r.t. optimal (action) value function is an optimal policy.

NAVIGATION GRID
Case 1: Actions are successful(deterministic environment); 𝛾 = 1
• 𝑉∗ 1,4 = 1
• 𝑉∗ 1,3 = 1
• 𝑉∗ 1,2 = 1
• 𝑉∗ 2,4 = −1

Case 2: Actions are successful(deterministic environment); 𝛾 = 0.9
• 𝑉∗ 1,4 = 1
• 𝑉∗ 1,3 = 0.9
• 𝑉∗ 1,2 = 0.9'
• 𝑉∗ 2,4 = −1

Case 3: Actions are successful with probability 0.8(stochastic environment);
With probability 0.1 each, you can go up and down; 𝛾 = 0.9
• 𝑉∗ 1,4 = 1
• 𝑉∗ 1,3 = 0.8 ∗ 0.9 ∗ 1 + 0.1 ∗ 0.9 ∗ 𝑉∗ 1,3 + (0.1 ∗ 0.9 ∗ 𝑉∗ 2,3)
• Computation of 𝑉∗ 𝑠 is not straightforward in such cases.

REFERENCES

1. Professor Easwer Subramaniyam’s course CS5500 at IIT, Hyderabad,India
2. Prof. David Silver’s RL course from Youtube(DeepMind)
3. Reinforcement Learning and Optimal Control by Dmitri Bertsekas
4. Prof. Pascal Poupart’s course CS885 on Youtube(@pascalpoupart3507)

