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GUESS THE ANIMAL

QUOLL



WHAT IS MACHINE LEARNING?
• machines learn to do a given task without being explicitly programmed.

Supervised 
learning

•Labelled 
dataset

•Learn f to map 
y=f(x)

•Classification, 
Regression

Unsupervised 
learning

•Unlabelled 
dataset

•Learn 
underlying 
structure

•Clustering, 
Dimensionality 
reduction

Reinforcement 
learning

•Generate 
dataset

•Maximize utility 
by learning to 
interact

•Robot 
navigation, 
learning games



TRANSLATE THESE WORDS

• ਕੰਨ (Punjabi) • Nez (French)



KEY TAKEAWAYS

• You were rewarded for each type of answer.
• You as an agent interacted with the environment to translate better.
• Environment gave feedback in the form of rewards.



SUDOKU

Task: Fill the missing squares in as less time as 
possible.



• Agent makes a sequence of moves(actions)
• Each move by the agent decides which subsequent squares 

can be filled next



• Reaching the goal state will have a reward
• Intermediate squares may or may not have reward

Goal stateAn intermediate state



RL FRAMEWORK



INVENTORY CONTROL EXAMPLE

• Observation: Stock level
• Action: What to purchase
• Reward: Profit



• An external system that an agent can perceive and act on
• Receives action from agent and in response emits appropriate reward and 

(next) observation

ENVIRONMENT

AGENT
• A system that takes actions to change the state of the environment 

(Decision maker)
• Executes action upon receiving observation
• For taking an action the agent receives an appropriate reward



• State can be viewed as a summary or an abstraction of the history of the 
system

• For example, in Sudoku, the state could be raw image or vector 
representation of the board

STATE

REWARD
• Reward is a scalar feedback signal
• Indicates how well agent acted at a certain time 
• The agent’s aim is to maximise cumulative reward



COMPONENTS OF AN RL AGENT

• Policy: agent’s behaviour function; π: S A
• Value function: evaluates how good is each state and/or 

action. Therefore, it is used to choose appropriate action among the 
available options.

• Model: agent’s representation of the environment; Mainly contains 
state transition information and reward function.



TIC TAC TOE
• Observation: Board position
• Action: Moves
• Reward: Win or loss
• Policy: Agent has multiple empty squares to 

choose
• Random policy is to place ’X’ in any one of 

empty squares randomly 
• Better policy is to place ’X’ in square 5

• Value Function: Agent may have 
an estimate about the value of being in 
a certain board configuration

• Model: Model of transition probabilities 
between states

x1 O2 3

x4 5 6

O7 O8 X9



FRAMEWORK



MARKOV DECISION PROCESS

• Provides a mathematical framework for modelling decision making process
• Can formally describe the working of the environment and the agent
• Core problem in solving an MDP is to find an ’optimal’ policy (or behaviour) 

for the decision maker (agent) to maximize the total future reward



• A random variable X denotes the outcome of a random phenomenon
• Examples include outcome of a coin toss and the roll of a dice.

RANDOM VARIABLE

STOCHASTIC PROCESS
• It is a collection of random variables indexed by some mathematical set T.
• T has the interpretation of time and is typically, ℕ or ℝ. Assume T=ℕ for our 

sessions.
• Notation: {Xt}t∈T



MARKOV PROPERTY

• A stochastic process {St}t∈T is said to have Markov property if for any state st,
P(St+1|St)=P(St+1|S1,S2,…,St).

• Stcaptures all relevant information from history and is a sufficient statistic of 
the future.

• Memoryless property



STATE TRANSITION PROBABILITY
• For a stochastic process {St}t∈T , the state transition probability for successive 

states s and s′ is denoted by
PSS′= P(St+1= S′|St= S).

• State transition matrix P then denotes the transition probabilities from all states s to all 
successor states s′ (with each row summing to 1.

P11 P12 ... P1n
.

P= .
.

Pn1 Pn2 ... Pnn



MARKOV CHAIN
• A stochastic process {st}t∈T is 

a Markov Chain if it satisfies 
Markov property.

• It is represented by the 
tuple < S, P > where S denotes 
the set of states.

• It is also called Markov process.



MARKOV REWARD PROCESS
A Markov reward process is a tuple <S,P,R, 𝛾> is a Markov 
chain with values
• S: Finite set of states
• P: State transition probability
• R: Reward for being in state st is given by a deterministic 

function R
rt+1=R(st)

• 𝛾: Discount factor such that 𝛾∈ [0,1]



WHY DISCOUNTING?

• Offers trade off between ‘myopic’ and ‘far sighted’ rewards
• Avoids infinite returns in cyclic and infinite horizon Markov processes
• Undiscounted Markov reward process are mostly used when sequences 

terminate.



TOTAL DISCOUNTED REWARD
Total discounted reward from time step t is, ∑!"#$ (𝛾!𝑟%&!&')
• 𝛾→ 0 (myopic); 𝛾→ 1(far-sighted)
• Value of reward r after k+1 timesteps is 𝛾kr.

STATE-VALUEFUNCTION
Value function V(s) denotes the long-term value of state s,

𝑉 𝑠 = 𝔼 𝐺% 𝑠% = 𝑠 = 𝔼(+
!"#

$

𝛾!𝑟%&!&' 𝑠% = 𝑠

and is independent of time, t.



RECURSIVE FORMULATION 
OF VALUE FUNCTION

𝑉 𝑠 = 𝔼 𝐺" 𝑠" = 𝑠 = 𝔼('
#$%

&

𝛾#𝑟"'#'( 𝑠" = 𝑠

= 𝔼 𝑟"'( + 𝛾𝑟"') + 𝛾)𝑟"'* +⋯ 𝑠" = 𝑠

= 𝔼 𝑟"'( 𝑠" = 𝑠 + 𝛾𝔼 𝐺"'( 𝑠" = 𝑠

= 𝔼 𝑟"'( 𝑠" = 𝑠 + 𝛾𝔼 𝔼 𝐺"'( 𝑠" = 𝑠 𝑠" = 𝑠

= 𝔼 𝑟"'( 𝑠" = 𝑠 + 𝛾𝔼 𝑉 𝑠"'( 𝑠" = 𝑠

= 𝔼(𝑟"'( + 𝛾𝑉(𝑠"'()|𝑠" = 𝑠)



BELLMAN EQUATION FOR MRP

• For 𝑠! ∈ S, a successor state of 𝑠 with transition probability P""!, we can 
rewrite 𝑉(𝑠) as

𝑉 𝑠 = 𝔼 𝑟#$% + 𝛾 -
""∈S

P""" V s! .

• This is the Bellman equation for value functions 



MATRIX FORM

• Let S={1,2,…n} and P be known. Then, 
𝑉 = R+ γPV

where	 𝑉 1
𝑉 2
.
.
.

𝑉(𝑛)

=

R 1
R 2
.
.
.

R(𝑛)

+ 𝛾

P%%
P'%

⋯
…

P%(

P'(
⋮ ⋱ ⋮

P(% ⋯ P((

×

𝑉 1
𝑉 2
.
.
.

𝑉(𝑛)

.

Solving for V, we get,
𝑉 = (𝐼 − 𝛾P))%R.



ABSORBING STATE

• A state 𝑖 ∈ S is said to be absorbing if it is impossible to leave that state, 
Mathematically, 

𝑃*+ = C1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

• In a game of snake and ladders, the state ‘100’ is an absorbing state.



MARKOV DECISION PROCESS

MDP is a tuple <S,A, P,R, 𝛾> where
• S: Finite set of states
• A: Finite set of actions
• P: State transition probability

P(()
* = ℙ 𝑠%&' = 𝑠) 𝑠% = 𝑠, 𝑎% = 𝑎 , 𝑎% ∈ 𝐴

• R: Reward for taking action 𝑎𝑡 at state 𝑠𝑡 and transitioning to state 𝑠%&' is 
given by the deterministic function R

• 𝑟%&' = R 𝑠% , 𝑎% , 𝑠%&' .
• 𝛾: Discount factor such that 𝛾∈ [0,1]



SNAKE AND LADDERS

States: Each square from 1 to 100
Actions: Move right, climb ladders, or 
come down snakes depending on 
the number on the die throw
Rewards: -1 for every move made until 
reaching ‘100’



ATARI-PONG GAME

States: Possible set of all images
Actions: Paddle up or down
Rewards: 
+1 for making the opponent miss the ball, 
-1 if the agent misses the ball,
0 otherwise.



POLICY

• Let π denote a policy that maps state space S  to action space A .

There are 2 types of policies:
• Deterministic policy: a=π(s), s∈S , a∈A.

• Stochastic policy: π(a|s)=P[at=a|st=s] 



TIC TAC TOE REVISITED

• Deterministic Policy: Place ’X’ in square 5
• Stochastic policy:  Place ’X’ in square 5 with 

probability 0.8 and place ‘X’ in square 6 with 
probability 0.2

x1 O2 3

x4 5 6

O7 O8 X9



NAVIGATION GRID
• States: {1,2,…,14, T1, T2}
• Actions: {right, left, up, down}
• Deterministic Policy:

𝜋 𝑠 = C𝑑𝑜𝑤𝑛, 𝑠 = {3,7,11}
𝑟𝑖𝑔ℎ𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Example sequences: {{12,13,14,T2}, {4,5,6,7,11,T2}}
• Stochastic Policy: 𝜋(𝑎|𝑠) could be a uniform random 

action between all possible actions at state s
• Example sequences: {{4,5,9,8,12,…},{1,2,6,5,1,2,3,…}}

T1

T2



GRAPHICAL NOTATION

S1

S2

S3

a=1

a=2

p=1

p=0.8

p=0.2



VALUE FUNCTION REVISITED

• The value function 𝑉(𝑠) under policy 𝜋 in state 𝑠 is the expected return 
starting from state s and then following policy 𝜋

𝑉- 𝑠 = 𝔼- -
./0

1

𝛾.𝑟#$.$%|𝑠# = 𝑠 = 𝔼- 𝑟#$% + 𝛾𝑉- 𝑠#$% 𝑠# = 𝑠 .

• Goal: Find policy 𝜋 that maximizes 𝑉-(𝑠).



EXAMPLE
S1
(0)

S2
(0)

S3
(0)

S4
(100)

Compute 𝑉(𝑠)) and 𝑉 𝑠* with 𝛾 = 1
• Policy  1: Move left or right with equal probability

Solution: 𝑉 𝑠) = 0 ∗ 0.5 + 0 ∗ 0.5 = 0
𝑉 𝑠* = 0 ∗ 0.5 + 100 ∗ 0.5 = 50

• Policy  2: Move left or right with probability 0.6 and 0.4 
respectively
Solution: 𝑉 𝑠) = 0 ∗ 0.6 + 0 ∗ 0.4 = 0

𝑉 𝑠* = 0 ∗ 0.6 + 100 ∗ 04 = 40
• Policy  3: Move right with probability 1

Solution: 𝑉 𝑠) = 0 ∗ 1 = 0
𝑉 𝑠* = 100 ∗ 1 = 100



ACTION-VALUE FUNCTION

• The action value function 𝑄(𝑠, 𝑎) under policy 𝜋 is the expected return 
starting from state 𝑠 and taking action 𝑎 following policy 𝜋

𝑄+ 𝑠, 𝑎 = 𝔼+ ∑!"#$ 𝛾!𝑟%&!&' 𝑠% = 𝑠, 𝑎% = 𝑎 .
• It can be decomposed as 

𝑄+ 𝑠, 𝑎 = 𝔼+ 𝑟%&' + 𝛾𝑄+ 𝑠%&',𝑎%&' 𝑠% = 𝑠, 𝑎% = 𝑎 .



RELATIONSHIP BETWEEN 𝑉# AND 𝑄#

𝑉! 𝑠 = $
"#A

𝜋(𝑎|𝑠)𝑄!(𝑠, 𝑎)



OPTIMAL VALUE FUNCTION

• The optimal value function 𝑉∗, for state 𝑠, is the maximum value function over 
all policies.

• Mathematically, 
𝑉∗ 𝑠 = max

-34#$%$
𝑉- 𝑠 .

• The optimal action-value function 𝑄∗ 𝑠, 𝑎 , for a state 𝑠 and action 𝑎, is the 
maximum action-value function over all policies. 

• Mathematically, 
𝑄∗ 𝑠, 𝑎 = max

-34#$%$
𝑄- 𝑠, 𝑎 .



FOCUS EXAMPLE



FOCUS EXAMPLE CONTINUED



OPTIMAL POLICY

• Define a partial ordering of policies 
𝜋 ≥ 𝜋!, 𝑖𝑓 𝑉- 𝑠 ≥ 𝑉-" 𝑠 , ∀𝑠 𝜖 S

• There exists an optimal policy 𝜋∗ that is better than or equal to all other 
policies.

• All optimal policies achieve the optimal value function, 
𝑉∗ 𝑠 = 𝑉-∗ 𝑠 .

• All optimal policies achieve the optimal action-value function,
𝑄∗ 𝑠, 𝑎 = 𝑄-∗ 𝑠, 𝑎



FOCUS EXAMPLE REVISITED



RELATIONSHIP BETWEEN 𝑉∗ # 𝑎𝑛𝑑 𝑄∗(#,#)

𝑉∗ 𝑠 = max
"∈A

𝑄∗(𝑠, 𝑎)



GREEDY POLICY
• For any given  𝑉 ^ , define 𝜋(𝑎|𝑠) as follows:

𝜋5 = 𝜋 𝑎 𝑠 = 𝑔𝑟𝑒𝑒𝑑𝑦(𝑉) =
1, 𝑖𝑓 𝑎 = argmax

63A
[-
""3S

P """
6 (R """

6 + 𝛾𝑉(𝑠!))]

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
• For given 𝑄 ^,^ , define 𝜋(𝑎|𝑠) as follows:

𝜋5 = 𝜋 𝑎 𝑠 = 𝑔𝑟𝑒𝑒𝑑𝑦(𝑉) = c
1, 𝑖𝑓 𝑎 = argmax

63A
𝑄(𝑠, 𝑎)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Greedy policy w.r.t. optimal (action) value function is an optimal policy.



NAVIGATION GRID 
Case 1: Actions are successful(deterministic environment); 𝛾 = 1
• 𝑉∗ 1,4 = 1
• 𝑉∗ 1,3 = 1
• 𝑉∗ 1,2 = 1
• 𝑉∗ 2,4 = −1

Case 2: Actions are successful(deterministic environment); 𝛾 = 0.9
• 𝑉∗ 1,4 = 1
• 𝑉∗ 1,3 = 0.9
• 𝑉∗ 1,2 = 0.9'
• 𝑉∗ 2,4 = −1

Case 3: Actions are successful with probability 0.8(stochastic environment);
With probability 0.1 each, you can go up and down; 𝛾 = 0.9
• 𝑉∗ 1,4 = 1
• 𝑉∗ 1,3 = 0.8 ∗ 0.9 ∗ 1 + 0.1 ∗ 0.9 ∗ 𝑉∗ 1,3 + (0.1 ∗ 0.9 ∗ 𝑉∗ 2,3 )
• Computation of 𝑉∗ 𝑠 is not straightforward in such cases. 
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